Nonlinearly Structured Low-Rank Approximation

نویسندگان

  • Ivan Markovsky
  • Konstantin Usevich
چکیده

Polynomially structured low-rank approximation problems occur in • algebraic curve fitting, e.g., conic section fitting, • subspace clustering (generalized principal component analysis), and • nonlinear and parameter-varying system identification. The maximum likelihood estimation principle applied to these nonlinear models leads to nonconvex optimization problems and yields inconsistent estimators in the errors-in-variables (measurement errors) setting. We propose a computationally cheap and statistically consistent estimator based on a bias correction procedure, called adjusted least-squares estimation. The method is successfully used for conic section fitting and was recently generalized to algebraic curve fitting. The contribution of this book’s chapter is the application of the polynomially structured low-rank approximation problem and, in particular, the adjusted least-squares method to subspace clustering, nonlinear and parameter-varying system identification. The classical in system identification input-output notion of a dynamical model is replaced by the behavioral definition of a model as a set, represented by implicit nonlinear difference equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Low Multilinear Rank Approximation by Structured Matrix Low-Rank Approximation

We present a new connection between higherorder tensors and affinely structured matrices, in the context of low-rank approximation. In particular, we show that the tensor low multilinear rank approximation problem can be reformulated as a structured matrix low-rank approximation, the latter being an extensively studied and well understood problem. We first consider symmetric tensors. Although t...

متن کامل

Structured Low Rank Approximation

Abstract. This paper concerns the construction of a structured low rank matrix that is nearest to a given matrix. The notion of structured low rank approximation arises in various applications, ranging from signal enhancement to protein folding to computer algebra, where the empirical data collected in a matrix do not maintain either the specified structure or the desirable rank as is expected ...

متن کامل

Fast Low Rank Approximation of a Sylvester Matrix by Structured Total Least Norm

The problem of approximating the greatest common divisor(GCD) for polynomials with inexact coefficients can be formulated as a low rank approximation problem with a Sylvester matrix. In this paper, we present an algorithm based on fast Structured Total Least Norm(STLN) for constructing a Sylvester matrix of given lower rank and obtaining the nearest perturbed polynomials with exact GCD of given...

متن کامل

Global optimization for structured low rank approximation

In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank approximation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem of finding the closest (in some pre-defined norm) rank r approximation of a given Hankel matrix, which is also of Hankel structure. Unlike many other methods described i...

متن کامل

Exact Solutions in Structured Low-Rank Approximation

Structured low-rank approximation is the problem of minimizing a weighted Frobenius distance to a given matrix among all matrices of fixed rank in a linear space of matrices. We study the critical points of this optimization problem using algebraic geometry. A particular focus lies on Hankel matrices, Sylvester matrices and generic linear spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014